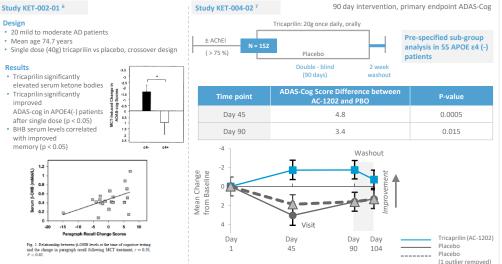


Administering tricaprilin after a meal optimises bioavailability and minimises adverse events

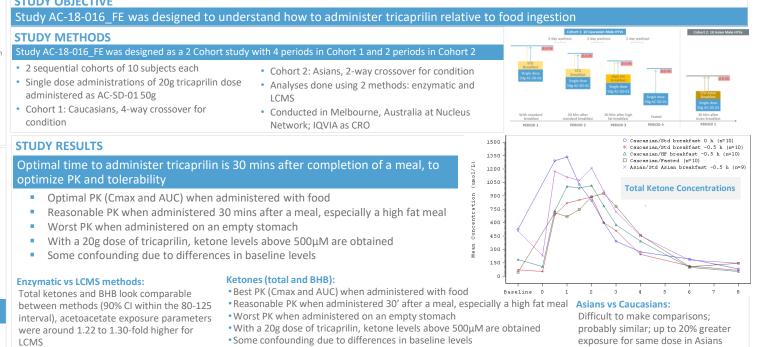
Judith Anne Walker*, MD; Lars Nelleman, *MD; Lilian Chow*, MRDM; Bruce Morimoto**, PhD

ABSTRACT

- Background: Cerebral glucose hypometabolism in posterior cingulate, parietal, temporal, and prefrontal cortex is an early feature of Alzheimer's disease. These regions exhibit declines in glucose metabolism but have been shown to preserve the ability to metabolize ketones. Therefore, Cerecin is developing tricaprilin as treatment for Alzheimer's. Multiple formulations of tricaprilin, an 8-carbon chain triglyceride ketogenic therapy, were developed and tested in vitro, in vivo and in human studies to assess pharmacokinetics, safety and tolerability.
- Objective: To understand how food ingestion affects PK, safety and tolerability of a new formulation of tricaprilin in healthy young men of Caucasian and Chinese descent.
- Method: This food effect clinical study (Study AC-18-016) was conducted in healthy human Caucasian and Asian volunteers and in a variety of food conditions to better understand the influence of food ingestion on PK and on tolerability. It employed a 2-part, 4-way and 2-way cross-over design (NCT03551769)
- Result: This novel formulation of tricaprilin showed desirable PK characteristics, leading to generation of ketones and excellent safety and tolerability, when administered in doses of 20g after a meal, in both Caucasians and Chinese.
- Conclusion: In future clinical studies, tricaprilin will be administered 30' after completion of a meal to optimize bioavailability and minimize any GI adverse events.


BACKGROUND

Ketones can provide energy-deprived brain cells in AD brains with an alternative fuel


- The brain is highly metabolic so any deficiency in its metabolism results in a severe energetic stress and ultimately in cell death
- Normally, the brain relies almost exclusively on glucose as an energy substrate.¹
- The brain accounts for only 2% of body weight but, utilizes 25% of total body glucose (~120g /day)
-so the body has a highly conserved physiological mechanism to utilize an alternative energy substrate in times of low glucose availability: ketone bodies
- Cerebral glucose hypometabolism is characteristic in AD, is progressive and correlates with cognitive decline.²
- Regional declines in CMRglc occur early in AD, decades before clinical signs of dementia.³

· Ketone bodies are the brain's natural back up fuel, normally produced under conditions of low glucose availability, such as ketogenic diets or fasting and an provide up to 60 percent of one's brain energy needs⁴

Cells which do not metabolize glucose in AD have preserved ability to metabolize ketones, the brains favored fuel.⁵

STUDY OBJECTIVE

CONCLUSIONS

This food effect study indicates that the best time to administer AC-SD formulations of tricaprilin is 30 mins after completion of a meal

Safety – Tolerability

Safe

Ketone bodies

β-hydroxybutyrate

Acetoacetate

Acetone

- No new unexpected events
- Conditions 2 and 3 well tolerated as a single dose, without titration in healthy young men: administration 30 mins after the end of a standard or a high fat meal
- Not well tolerated when administered with a meal (10 mins after the start of a meal) or on an empty stomach (worst tolerated)

Pharmacokinetics

- Best PK when administered with food
- Good PK when administered after a standard or high fat meal
- Plasma ketone levels in 500-1000 µM range readily obtained after a single dose in healthy young men under the fed conditions. Note higher baseline ketones than in earlier studies.
- Probably similar PK in Asians and Caucasians; up to 20% difference between Caucasians and Asians when adjusted for weight but could be explained by baseline differences; to be confirmed in population PK in later studies

Overall

Best balance of PK and tolerability: administer 30 minutes after the end of a meal

REFERENCES

- 1. Clarke, D. D. and L. Sokoloff (1994). Basic Neurochemistry. New York, Raven Press: 645-680. 2. Mosconi, L., M., et al. (2007). Exp Gerontol 42(1-2): 129-38. 3. Reiman, E. M., et al. (2004). Proc Natl Acad Sci U S A 101(1): 284-9.)
- 4. Owen OE et al., (1967). J Clin Invest 46, 1589-1595. 5. Castellano CA et al., (2014). J Alzheimer's Dis. 2015;43(4):1343-53. 6. Reger MA et al., (2004). Neurobiol of Aging; 25: 311-314. 7. Henderson ST et al., (2009) Nutr Metab (Lond) 6(1): 31.

*Cerecin Pte Ltd, 8 Shenton Way #08-02 AXA Tower, Singapore 068811; **Cerecin INC, 44 Cook Street, Suite 100-71 Denver, CO 80206, USA

CTAD 04-07 November 2020, Poster #17